It’s well known that you can construct the octonions using triality. One statement of triality is that Spin ( 8) has nontrivial outer automorphisms of order 3. On the other hand, the octonions have ...
This week, 50 category theorists and software engineers working on “safeguarded AI” are meeting in Bristol. They’re being funded by £59 million from ARIA, the UK’s Advanced Research and Invention ...
How do you count rooted planar n n-ary trees with some number of leaves? For n = 2 n = 2 this puzzle leads to the Catalan numbers. These are so fascinating that the combinatorist Richard Stanley wrote ...
These are some lecture notes for a 4 1 2 \frac{1}{2}-hour minicourse I’m teaching at the Summer School on Algebra at the Zografou campus of the National Technical University of Athens. To save time, I ...
Despite the “2” in the title, you can follow this post without having read part 1. The whole point is to sneak up on the metricky, analysisy stuff about potential functions from a categorical angle, ...
In Part 1, I explained my hopes that classical statistical mechanics reduces to thermodynamics in the limit where Boltzmann’s constant k k approaches zero. In Part 2, I explained exactly what I mean ...
I keep wanting to understand Bernoulli numbers more deeply, and people keep telling me stuff that’s fancy when I want to understand things simply. But let me try again.
When is it appropriate to completely reinvent the wheel? To an outsider, that seems to happen a lot in category theory, and probability theory isn’t spared from this treatment. We’ve had a useful ...
The study of monoidal categories and their applications is an essential part of the research and applications of category theory. However, on occasion the coherence conditions of these categories ...
such that the following 5 5 diagrams commute: (for f: x 0 → x 1 f:x_0\to x_1 and y ∈ 풞 y\in\mathcal{C}, we write f ⊗ y f\otimes y to mean f ⊗ id y: x 0 ⊗ y → x 1 ⊗ y f\otimes\operatorname{id}_y: ...
Double limits capture the notion of limits in double categories. In ordinary category theory, a limit is the best way to construct new objects from a given collection of objects related in a certain ...